Abstract
In this paper, we validate two theoretical formula used to characterize thermal transport of superlattices at different temperatures. These formulas are used to measure cross-plane thermal conductivity and thermal boundary resistance, when it is not possible to obtain heat capacity or thermal diffusivity and in-plane thermal conductivity. We find that the most common formula for calculating thermal diffusivity and heat capacity (and density) can be used in a temperature range of −50 °C to 50 °C. This confirms that the heat capacity in the very thin silicon membranes is the same as in bulk silicon, as was preliminary investigated using an elastic continuum model. Based on the obtained thermal parameters, we can fully characterize the sample using a new procedure for characterization of the in-plane and cross-plane thermal transport properties of thin-layer and superlattice semiconductor samples.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献