Abstract
Terahertz time-domain spectroscopy and Fourier-transform infrared spectroscopy were developed as the method for the investigation of high-frequency characteristics of two-dimensional electron gas and GaN:C buffer layers in AlGaN/AlN/GaN heterostructures grown on a semi-insulating SiC substrate. The reflectance and transmittance spectra of the selected heterostructure layers were studied after the top layers were removed by a reactive ion etching. Results were numerically analyzed using the transfer matrix method taking into account the high-frequency electron conductivity via a Drude model and complex dielectric permittivity of each epitaxial layer via a one-phonon-resonance approximation. Good agreement between the experiment and theory was achieved revealing the temperature dependent electron effective mass in AlGaN/AlN/GaN high electron mobility transistor structures and the small damping factors of optical phonons due to high crystal quality of the epitaxial layers fabricated on the SiC substrate.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献