MES: A Mathematical Model for the Revival of Natural Philosophy

Author:

Ehresmann Andrée,Vanbremeersch Jean-Paul

Abstract

The different kinds of knowledge which were connected in Natural Philosophy (NP) have been later separated. The real separation came when Physics took its individuality and developed specific mathematical models, such as dynamic systems. These models are not adapted to an integral study of living systems, by which we mean evolutionary multi-level, multi-agent, and multi-temporality self-organized systems, such as biological, social, or cognitive systems. For them, the physical models can only be applied to the local dynamic of each co-regulator agent, but not to the global dynamic intertwining these partial dynamics. To ‘revive’ NP, we present the Memory Evolutive Systems (MES) methodology which is based on a ‘dynamic’ Category Theory; it proposes an info-computational model for living systems. Among the main results: (i) a mathematical translation of the part–whole problem (using the categorical operation colimit) which shows how the different interpretations of the problem support diverging philosophical positions, from reductionism to emergentism and holism; (ii) an explanation of the emergence, over time, of structures and processes of increasing complexity order, through successive ‘complexification processes’. We conclude that MES provides an emergentist-reductionism model and we discuss the different meanings of the concept of emergence depending on the context and the observer, as well as its relations with anticipation and creativity.

Publisher

MDPI AG

Subject

History and Philosophy of Science,Philosophy

Reference36 articles.

1. Six Lectures on Modern Natural Philosophy;Truesdell,1966

2. Integral biomathics: A post-Newtonian view into the logos of bios

3. Metaphysica, Z.,1966

4. Hierarchical Structures

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3