Hot Deformation Behavior of Fe40Mn20Cr20Ni20 Medium-Entropy Alloy

Author:

Wang Zhen1,Ma Qixin2,Mao Zhouzhu2,He Xikou1,Zhao Lei3,Che Hongyan1,Qiao Junwei24

Affiliation:

1. Central Iron and Steel Research Institute, Beijing 100083, China

2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. Beijing Key Laboratory of Metal Materials Characterization, NCS Testing Technology Co., Ltd., Beijing 100083, China

4. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Fe40Mn20Cr20Ni20 medium-entropy alloy (MEA) has a single-phase crystal structure with high strength and good ductility at room temperature. It is important to study the hot deformation behavior for this alloy at a partially recrystallized state for possible high-temperature applications. In this investigation, the tensile tests were conducted on sheet materials treated via cold rolling combined with annealing at strain rates of 1 × 10−3–1 × 10−1 s−1 and deformation temperatures of 573–873 K. And the hyperbolic sine model was used to study the relationship between the peak stress, deformation energy storage and Zener–Hollomon parameter (Z parameter) of Fe40Mn20Cr20Ni20 medium-entropy alloys under high-temperature tension. According to the Arrhenius-type model, the constitutive equation of the alloys based on the flow stress was constructed, and the deformation activation energy and material parameters under different strain conditions were obtained. Based on the power dissipation theory and the instability criterion of the dynamic material model, the power dissipation diagram and the instability diagram were constructed, and the hot working map with a strain of 0.1 was obtained. The results show that the hyperbolic sine relation between the peak stress and Zener–Hollomon parameters can be well satisfied, and the deformation activation energy Q is 242.51 KJ/mol. Finally, the excellent thermo-mechanical processing range is calculated based on the hot working map. The flow instability region is 620–700 K and the strain rate is 2 × 10−3–4 × 10−3 s−1, as well as in the range of 787–873 K and 2 × 10−3–2.73 × 10−2 s−1. The optimum thermo-mechanical window is 850–873 K, ε˙ = 1 × 10−3–2 × 10−3 s−1.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province, China

State Key Lab of Advanced Metals And Materials of China

Independent R&D Project of China Iron & Steel Research Institute Group

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3