Effects of Magnesium Mineral on the Reduction and Expansion Performances of Baiyun Ebo Iron Pellets

Author:

Wang Yongbin12,Peng Jun2,Liu Shuang2,Luo Guoping2,Zhang Fang2,An Shengli12ORCID

Affiliation:

1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

Pellet ore is an important raw material for blast furnace ironmaking, and its reduction and expansion performance directly affects the smooth operation and smelting indicators of the blast furnace. This paper quantitatively studied the effects of magnesium minerals such as dolomite and serpentinite on the pellet-forming performance, the microstructure after roasting, compressive strength, and the reduction expansion performance of Baiyun Ebo iron concentrate. The optimal ratio of dolomite and serpentinite to add was determined when preparing pellets using Baiyun Ebo iron concentrate powder. The results showed that the drop strength and compressive strength of the green pellet after adding serpentine were relatively higher than those after adding dolomite, indicating that controlling the MgO content in the green pellet at 2.5% using serpentine was beneficial for improving the drop strength and compressive strength. Under the condition of adding dolomite, when the MgO content was 2.5%, the compressive strength of the roasted pellet was the highest, which was 2192.6 N, and the volume expansion rate was 12.32%. Under the condition of adding serpentine, when the MgO content was 2.5%, the compressive strength of the roasted pellet was 2622.2 N, and the volume expansion rate was 9.71%. Compared with dolomite as a magnesium additive, when the reduction expansion rate of Baiyun Ebo iron concentrate was controlled within 20%, serpentine only needed to have a MgO content of about 1.5% in the pellets, while dolomite needed to have a MgO content of about 2.5%. Therefore, under the condition that the MgO contents of dolomite and serpentine were equivalent, the amount of serpentine used was lower.

Funder

National Nature Science Foundation of China,

Fundamental Research Funds for Inner Mongolia University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3