Study on the Consumption Mechanism and Lubrication of Mold Powder Based on Non-Sinusoidal Oscillation Mode

Author:

Cao Minghui1,Liu Yuanhe1,Zhang Xingzhong1

Affiliation:

1. National Engineering Research Centre for Equipment and Technology of Cold Rolled Strip, Yanshan University, Qinhuangdao 066004, China

Abstract

A two-dimensional mold model coupled multiphase flow, heat transfer, solidification and mold oscillation was established based on the casting parameters of the mold of plant. The accuracy of the model was verified by comparing the measured by plant and calculated mold powder consumption under the same casting conditions. The mechanism of mold powder consumption and lubrication was analyzed based on the non-sinusoidal oscillation mode, and the effect of non-sinusoidal oscillation parameters on mold powder consumption was discussed. Mold powder consumption was determined by the downward flow velocity of liquid mold powder and the thickness of liquid mold powder film, the liquid mold powder consumption decreased with the decrease of those. When the mold moved downward, the mold powder thickness and downward flow velocity decreased, the minimum mold powder consumption reached at the middle of the negative strip time, and the variation was to opposite when the mold moved upward, the maximum mold powder consumption appeared during the positive strip time. With the decrease of casting speed and modification ratio, and increase of oscillation frequency and oscillation amplitude, the mold powder consumption had the tendency to increase. The nonlinear regression equation was fitted by the Levenberg–Marquardt method combined with the universal global optimization method to evaluate mold powder consumption.

Funder

Hebei Province Natural Science Fund

Hebei Education Department Higher Education Science and Technology Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3