Study on Peeling Performance of T-Type Brazing Joints Based on Energy Method

Author:

Duan Peng-Yang1,Zhou Guo-Yan1,Tu Shan-Tung1

Affiliation:

1. Key Laboratory of Pressure System and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Brazing technology is widely used in modern industrial systems as an important connection method. The brazing joints are the weakest zone in the whole structure and directly determine the working efficiency and life of the entire system. However, the research on the connection mechanism and fracture behavior of brazing joints is still unclear. In this study, the peeling force and displacement curves during the peeling process are tested by using T-type specimens. Based on the cohesive zone model, the peeling energy of each part during the whole peeling process is calculated and analyzed. The results show that the whole peeling process can be divided into three stages, including the initial stage, crack propagation stage, and stable peeling stage. The peeling energy of each stage can be calculated experimentally. The larger the peeling energy, the better the joint performance. Then, a simplified calculation method for peeling energy is developed for T-type joints and is verified as accurate using experimental data. It is also observed that the increase in the base material thickness can effectively improve the peeling performance of the joints. This provides a feasible and effective method for peel strength calculation and evaluation in brazing joints.

Funder

National Natural Science Foundation of China

Shanghai Gaofeng Project for University Academic Program Development

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3