The Hot Tensile Properties, Fracture Features, and Microstructure Evolution of As-Cast 7005 Aluminum Alloy

Author:

Xia Erli12ORCID,Ye Tuo12,Liu Limei12,Liu Wei12,Yue Huanyu2,Tang Jian2,Wu Yuanzhi12

Affiliation:

1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China

2. School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China

Abstract

In order to explore the hot deformation behaviors of the as-cast 7005 aluminum alloy, a number of hot tensile tests with four temperatures (100, 200, 300, and 400 °C) and three strain rates (0.001, 0.01, and 0.1 s−1) were performed. The Johnson–Cook model was used to express the relationship between stress, strain, strain rate, and temperature. Scanning electron microscopy (SEM), optical microscopy (OM), and transmission electron microscopy (TEM) were selected to reveal fracture features and microstructure evolution of the studied alloy. The results indicate that the flow stress level of the alloy reduces with increases in the deformation temperature and decreases in the strain rate. The established Johnson–Cook model can be employed to characterize the thermal flow behavior of the experimental alloy. The grains near the fracture surface were elongated, and a certain number of holes were found after deformation at 400 °C. The alloy exhibits obvious ductile fracture features. The dimple is deep with high quantity. Due to the plastic deformation, a high-density dislocation structure is found in the material. High-temperature conditions promote the annihilation of dislocation, and, as a result, the dislocation density decreases gradually with the increase in temperature. In addition, a certain number of precipitates were found in the alloy after high-temperature tension.

Funder

the National Natural Science foundation of China

the Scientific Research Fund of Hunan Provincial Education Department of China

the College student innovation and entrepreneurship project

the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3