Microstructure, Phase Composition, and Mechanical Properties of Intermetallic Ni-Al-Cr Material Produced by Dual-Wire Electron-Beam Additive Manufacturing

Author:

Astafurova Elena1ORCID,Reunova Kseniya1,Zagibalova Elena1,Astapov Denis1ORCID,Astafurov Sergey1,Kolubaev Evgenii1

Affiliation:

1. Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia

Abstract

Electron-beam additive manufacturing is one of the most promising methods for creating complex metal parts and structures. Additive manufacturing has already gained wide acceptance in the creation of various constructions from aluminum, copper, titanium, and their alloys as well as different classes of steels and other metallic materials. However, there are still many challenges associated with the additive manufacturing and post-production processing of intermetallic alloys. Thus, it is currently an urgent task for research. In this work, heat-resistant intermetallic alloys based on nickel, aluminum, and chromium were produced by dual-wire electron-beam additive manufacturing using commercial NiCr and Al wires. The microstructure, phase composition, and microhardness of the intermetallic billets are strongly dependent on the ratio of NiCr and Al wires, which have been fed during the additive growth of the material (NiCr:Al = 3:1 and NiCr:Al = 1:3). A metal-matrix composite material (Al3Ni-based intermetallide in Al-based matrix) was fabricated using the NiCr:Al = 1:3 ratio of the wires during the deposition. In tension, it fractures in a brittle manner before the plastic deformation starts, and it possesses a high microhardness of 6–10 GPa with a high dispersion of the value (the mean value is 8.7 GPa). This is associated with the complex phase composition of the material and the high fraction of a brittle Al3Ni intermetallic phase. In the material, obtained with the ratio NiCr:Al = 3:1, the ordered Ni3Al(Cr) and disordered Ni3Cr(Al) intermetallides are the dominating phases. Its microhardness turned out to be lower (4.1 GPa) than that in Al + Al3Ni-based composite, but intermetallic Ni3Al-based alloy demonstrates good mechanical properties in a high-temperature deformation regime (650 MPa, more than 10% elongation at 873 K). Microstructural studies, analysis of phase composition, and tensile mechanical properties of additively produced intermetallic materials show the perspective of dual-wire electron-beam additive manufacturing for producing intermetallic compounds for high-temperature applications.

Funder

Government research assignment for ISPMS SB RAS

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference29 articles.

1. Metal Additive Manufacturing: A Review;Frazier;J. Mater. Eng. Perform.,2014

2. Invited review article: Strategies and processes for high quality wire arc additive manufacturing;Cunningham;Addit. Manuf.,2018

3. Fabrication of NiCr alloy parts by selective laser melting: Columnar microstructure and anisotropic mechanical behavior;Song;Mater. Des.,2014

4. Wire-feed additive manufacturing of metal components: Technologies, developments, and future interests;Ding;Int. J. Adv. Manuf. Technol.,2015

5. A review of process development steps for new material systems in three-dimensional printing (3DP);Utela;J. Manuf. Process.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3