High-Throughput Ensemble-Learning-Driven Band Gap Prediction of Double Perovskites Solar Cells Absorber

Author:

Djeradi Sabrina1,Dahame Tahar1,Fadla Mohamed Abdelilah2,Bentria Bachir1,Kanoun Mohammed Benali3ORCID,Goumri-Said Souraya4ORCID

Affiliation:

1. Laboratoire de Physique des Matériaux, Université Amar Telidji de Laghouat, BP 37G, Laghouat 03000, Algeria

2. School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK

3. Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

4. Department of Physics, College of Science and General studies, Alfaisal University, P.O. Box 5092, Riyadh 11533, Saudi Arabia

Abstract

Perovskite materials have attracted much attention in recent years due to their high performance, especially in the field of photovoltaics. However, the dark side of these materials is their poor stability, which poses a huge challenge to their practical applications. Double perovskite compounds, on the other hand, can show more stability as a result of their specific structure. One of the key properties of both perovskite and double perovskite is their tunable band gap, which can be determined using different techniques. Density functional theory (DFT), for instance, offers the potential to intelligently direct experimental investigation activities and predict various properties, including band gap. In reality, however, it is still difficult to anticipate the energy band gap from first principles, and accurate results often require more expensive methods such as hybrid functional or GW methods. In this paper, we present our development of high-throughput supervised ensemble learning-based methods: random forest, XGBoost, and Light GBM using a database of 1306 double perovskites materials to predict the energy band gap. Based on elemental properties, characteristics have been vectorized from chemical compositions. Our findings demonstrate the efficiency of ensemble learning methods and imply that scientists would benefit from recently employed methods in materials informatics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3