An Evaluative Baseline for Sentence-Level Semantic Division

Author:

Cai Kuangsheng12,Chen Zugang12,Guo Hengliang2,Wang Shaohua1ORCID,Li Guoqing1,Li Jing1,Chen Feng2,Feng Hang2

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China

Abstract

Semantic folding theory (SFT) is an emerging cognitive science theory that aims to explain how the human brain processes and organizes semantic information. The distribution of text into semantic grids is key to SFT. We propose a sentence-level semantic division baseline with 100 grids (SSDB-100), the only dataset we are currently aware of that performs a relevant validation of the sentence-level SFT algorithm, to evaluate the validity of text distribution in semantic grids and divide it using classical division algorithms on SSDB-100. In this article, we describe the construction of SSDB-100. First, a semantic division questionnaire with broad coverage was generated by limiting the uncertainty range of the topics and corpus. Subsequently, through an expert survey, 11 human experts provided feedback. Finally, we analyzed and processed the feedback; the average consistency index for the used feedback was 0.856 after eliminating the invalid feedback. SSDB-100 has 100 semantic grids with clear distinctions between the grids, allowing the dataset to be extended using semantic methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

National Key Research and Development Program of China

Publisher

MDPI AG

Reference28 articles.

1. Unity and diversity in human language;Fitch;Philos. Trans. R. Soc. Lond. B Biol. Sci.,2011

2. Language Representation in the Human Brain: Evidence from Cortical Mapping;Bhatnagar;Brain Lang.,2000

3. The neurobiology of language beyond single-word processing;Hagoort;Science,2019

4. Why Can’t a Computer be more Like a Brain?;Hawkins;IEEE Spectr.,2007

5. Hawkins, J., Ahmad, S., Purdy, S., and Lavin, A. (2023, November 08). Biological and Machine Intelligence. Release 0.4. 2016–2020. Available online: https://numenta.com/resources/biological-and-machine-intelligence/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3