The Impact of Light Conditions on Neural Affect Classification: A Deep Learning Approach

Author:

Zentner Sophie1,Barradas Chacon Alberto1,Wriessnegger Selina C.1ORCID

Affiliation:

1. Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria

Abstract

Understanding and detecting human emotions is crucial for enhancing mental health, cognitive performance and human–computer interactions. This field in affective computing is relatively unexplored, and gaining knowledge about which external factors impact emotions could enhance communication between users and machines. Furthermore, it could also help us to manage affective disorders or understand affective physiological responses to human spatial and digital environments. The main objective of the current study was to investigate the influence of external stimulation, specifically the influence of different light conditions, on brain activity while observing affect-eliciting pictures and their classification. In this context, a multichannel electroencephalography (EEG) was recorded in 30 participants as they observed images from the Nencki Affective Picture System (NAPS) database in an art-gallery-style Virtual Reality (VR) environment. The elicited affect states were classified into three affect classes within the two-dimensional valence–arousal plane. Valence (positive/negative) and arousal (high/low) values were reported by participants on continuous scales. The experiment was conducted in two experimental conditions: a warm light condition and a cold light condition. Thus, three classification tasks arose with regard to the recorded brain data: classification of an affect state within a warm-light condition, classification of an affect state within a cold light condition, and warm light vs. cold light classification during observation of affect-eliciting images. For all classification tasks, Linear Discriminant Analysis, a Spatial Filter Model, a Convolutional Neural Network, the EEGNet, and the SincNet were compared. The EEGNet architecture performed best in all tasks. It could significantly classify three affect states with 43.12% accuracy under the influence of warm light. Under the influence of cold light, no model could achieve significant results. The classification between visual stimulus with warm light vs. cold light could be classified significantly with 76.65% accuracy from the EEGNet, well above any other machine learning or deep learning model. No significant differences could be detected between affect recognition in different light conditions, but the results point towards the advantage of gradient-based learning methods for data-driven experimental designs for the problem of affect decoding from EEG, providing modern tools for affective computing in digital spaces. Moreover, the ability to discern externally driven affective states through deep learning not only advances our understanding of the human mind but also opens avenues for developing innovative therapeutic interventions and improving human–computer interaction.

Funder

Graz University of Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3