FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar

Author:

Wan YangliangORCID,Liang Xingdong,Bu Xiangxi,Liu Yunlong

Abstract

Using millimeter-wave radar to scan and detect small foreign object debris (FOD) on an airport runway surface is a popular solution in civil aviation safety. Since it is impossible to completely eliminate the interference reflections arising from strongly scattering targets or non-homogeneous clutter after clutter cancellation processing, the consequent high false alarm probability has become a key problem to be solved. In this article, we propose a new FOD detection method for interference suppression and false alarm reduction based on an iterative adaptive approach (IAA) algorithm, which is a non-parametric, weighted least squares-based iterative adaptive processing approach that can provide super-resolution capability. Specifically, we first obtain coarse FOD target information by data preprocessing in a conventional detection method. Then, a refined data processing step is conducted based on the IAA algorithm in the azimuth direction. Finally, multiple pieces of information from the two steps above are used to comprehensively distinguish false alarms by fusion processing; thus, we can acquire accurate FOD target information. Real airport data measured by a 93 GHz radar are used to validate the proposed method. Experimental results of the test scene, which include golf balls with a diameter of 43 mm, were placed about 300 m away from radar, which show that the proposed method can effectively reduce the number of false alarms when compared with a traditional FOD detection method. Although metal balls with a diameter of 50 mm were placed about 660 m away from radar, they also can obtain up to 2.2 times azimuth super-resolution capability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on airport runway foreign object debris detection technology based on improved YOLOv7;Fourth International Conference on Sensors and Information Technology (ICSI 2024);2024-05-06

2. Improved small foreign object debris detection network based on YOLOv5;Journal of Real-Time Image Processing;2024-01-12

3. An Image Denoising Method for Arc-Scanning SAR for Airport Runway Foreign Object Debris Detection;Electronics;2023-02-16

4. A W‐band dual‐beam low side‐lobe level antenna with shared slotted waveguide arrays;IET Microwaves, Antennas & Propagation;2023-02-15

5. MMW Radar Data Clustering Optimization Method Based on Phase Continuity;2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC);2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3