CNN-Based Volume Flow Rate Prediction of Oil–Gas–Water Three-Phase Intermittent Flow from Multiple Sensors

Author:

Li JinkuORCID,Hu Delin,Chen Wei,Li Yi,Zhang Maomao,Peng Lihui

Abstract

In this paper, we propose a deep-learning-based method using a convolutional neural network (CNN) to predict the volume flow rates of individual phases in the oil–gas–water three-phase intermittent flow simultaneously by analyzing the measurement data from multiple sensors, including a temperature sensor, a pressure sensor, a Venturi tube and a microwave sensor. To build datasets, a series of experiments for the oil–gas–water three-phase intermittent flow in a horizontal pipe, in which gas volume fraction and water-in-liquid ratio ranges are 23.77–94.45% and 14.95–86.97%, respectively, and gas flow superficial velocity and liquid flow superficial velocity ranges are 0.66–5.23 and 0.27–2.14 m/s, respectively, have been carried out on a test loop pipeline. The preliminary results indicate that the model can provide relative prediction errors on the testing-1 dataset for the volume flow rates of oil-phase, gas-phase and water-phase within ±10% with 94.49%, 92.56% and 95.71% confidence levels, respectively. Additionally, the prediction results on the testing-2 dataset also demonstrate the generalization ability of the model. The consuming time of a prediction with one sample is 0.43 s on an Intel Xeon CPU E5-2678 v3, and 0.01 s on an NVIDIA GeForce GTX 1080 Ti GPU. Hence, the proposed CNN-based prediction model, which can fulfill the real-time application requirements in the petroleum industry, reveals the potential of using deep learning to obtain accurate results in the multiphase flow measurement field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3