Abstract
In this paper, we propose a deep-learning-based method using a convolutional neural network (CNN) to predict the volume flow rates of individual phases in the oil–gas–water three-phase intermittent flow simultaneously by analyzing the measurement data from multiple sensors, including a temperature sensor, a pressure sensor, a Venturi tube and a microwave sensor. To build datasets, a series of experiments for the oil–gas–water three-phase intermittent flow in a horizontal pipe, in which gas volume fraction and water-in-liquid ratio ranges are 23.77–94.45% and 14.95–86.97%, respectively, and gas flow superficial velocity and liquid flow superficial velocity ranges are 0.66–5.23 and 0.27–2.14 m/s, respectively, have been carried out on a test loop pipeline. The preliminary results indicate that the model can provide relative prediction errors on the testing-1 dataset for the volume flow rates of oil-phase, gas-phase and water-phase within ±10% with 94.49%, 92.56% and 95.71% confidence levels, respectively. Additionally, the prediction results on the testing-2 dataset also demonstrate the generalization ability of the model. The consuming time of a prediction with one sample is 0.43 s on an Intel Xeon CPU E5-2678 v3, and 0.01 s on an NVIDIA GeForce GTX 1080 Ti GPU. Hence, the proposed CNN-based prediction model, which can fulfill the real-time application requirements in the petroleum industry, reveals the potential of using deep learning to obtain accurate results in the multiphase flow measurement field.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献