Affiliation:
1. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China
2. School of Geographical Science, Nantong University, Nantong 226019, China
3. State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
Abstract
Lakes in cold and arid regions are extremely vulnerable to global climate change, and the study of seasonal spatial and temporal fluctuations of lake-groundwater chemistry is of major significance for water resource management and environmental preservation. In this study, we combined hydrogeochemical, multivariate statistical, and spatial interpolation methods to assess spatial and temporal variations of lake and groundwater chemistry in Hulun Lake during the frozen and non-frozen periods. The results show that sodium (Na+) is the most abundant cation in the Hulun Lake area. Bicarbonate (HCO3−) and sulfate (SO42−) are the most predominant anions in the lake, river, and ground water during both seasons. The higher Na+ + K+ concentrations in the frozen season were related to longer circulation time and lower renewable rate. The water chemistry of the lake was of the HCO3-SO4-Cl-Na type and that of groundwater in the east and west regions was of the SO4-Cl-Na and HCO3-Na types, respectively. The chemical compositions of groundwater in the non-frozen season were mainly affected by evaporation and concentration, while rock weathering, evaporation, and human activities jointly controlled groundwater chemical component in the frozen period. Based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods, Ca2+, NO3−, and SO42− were identified as the main controlling indicators of the chemical characteristics of groundwater and lake water. The increase of Ca2+ concentration in the center of the lake was related to groundwater discharge along the marginal tectonic fracture zone along the lake shores, which was the potential groundwater discharge area. The unconsolidated aquifer provides recharge channels for groundwater on the eastern side, which has a certain influence on the increase of nutrient concentration (NO3−) in the lake on the eastern shore. This research adds to our rough understanding of the lake-groundwater interaction in Hulun Lake, and provides a scientific foundation for the sustainable use of water resources, as well as the eco-logical integrity preservation in cold and arid regions.
Funder
Science and Technology Cooperation Project with Inner Mongolia
Science and Technology Project of Hulunbuir City
National Training Program of Innovation for Undergraduates, China
First Phase of the Project of Strengthening the Scientific and Technological Research Capacity of Hulun Lake Nature Reserve
Ecological Security Investigation and Assessment Project of Hulun Lake
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献