Evaluation of the Accuracy of Contactless Consumer Sleep-Tracking Devices Application in Human Experiment: A Systematic Review and Meta-Analysis

Author:

Zhai Huifang12,Yan Yonghong12ORCID,He Siqi3,Zhao Pinyong4,Zhang Bohan5

Affiliation:

1. Faculty of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400044, China

3. College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China

4. College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China

5. Faculty of Engineering, The University of Sydney, Camperdown, NSW 2006, Australia

Abstract

Compared with the gold standard, polysomnography (PSG), and silver standard, actigraphy, contactless consumer sleep-tracking devices (CCSTDs) are more advantageous for implementing large-sample and long-period experiments in the field and out of the laboratory due to their low price, convenience, and unobtrusiveness. This review aimed to examine the effectiveness of CCSTDs application in human experiments. A systematic review and meta-analysis (PRISMA) of their performance in monitoring sleep parameters were conducted (PROSPERO: CRD42022342378). PubMed, EMBASE, Cochrane CENTRALE, and Web of Science were searched, and 26 articles were qualified for systematic review, of which 22 provided quantitative data for meta-analysis. The findings show that CCSTDs had a better accuracy in the experimental group of healthy participants who wore mattress-based devices with piezoelectric sensors. CCSTDs’ performance in distinguishing waking from sleeping epochs is as good as that of actigraphy. Moreover, CCSTDs provide data on sleep stages that are not available when actigraphy is used. Therefore, CCSTDs could be an effective alternative tool to PSG and actigraphy in human experiments.

Funder

National Natural Science Foundation of China

Graduate Research and Innovation Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3