A Hybrid Data-Driven-Agent-Based Modelling Framework for Water Distribution Systems Contamination Response during COVID-19

Author:

Kadinski Leonid,Salcedo CamiloORCID,Boccelli Dominic L.,Berglund EmilyORCID,Ostfeld AviORCID

Abstract

Contamination events in water distribution systems (WDSs) are highly dangerous events in very vulnerable infrastructure where a quick response by water utility managers is indispensable. Various studies have explored methods to respond to water events and a variety of models have been developed to simulate the consequences and the reactions of all stakeholders involved. This study proposes a novel contamination response and recovery methodology using machine learning and knowledge of the topology and hydraulics of a water network inside of an agent-based model (ABM). An artificial neural network (ANN) is trained to predict the possible source of the contamination in the network, and the knowledge of the WDS and the possible flow directions throughout a demand pattern is utilized to verify that prediction. The utility manager agent can place mobile sensor equipment to trace the contamination spread after identifying the source to identify endangered and safe places in the water network and communicate that information to the consumer agents through water advisories. The contamination status of the network is continuously updated, and the consumers reaction and decision making are determined by a fuzzy logic system considering their social background, recent stress factors based on findings throughout the COVID-19 pandemic and their location in the network. The results indicate that the ANN-based support tool, paired with knowledge of the network, provides a promising support tool for utility managers to identify the source of a possible water event. The optimization of the ANN and the methodology led to accuracies up to 80%, depending on the number of sensors and the prediction types. Furthermore, the specified water advisories according to the mobile sensor placement provide the consumer agents with information on the contamination spread and urges them to seek for help or support less.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3