Improving Measurement Accuracy of Deep Hole Measurement Instruments through Perspective Transformation

Author:

Zhao Xiaowei12ORCID,Du Huifu12,Yu Daguo12

Affiliation:

1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China

2. Shanxi Deep Hole Processing Engineering Technology Research Center, Taiyuan 030051, China

Abstract

Deep hole measurement is a crucial step in both deep hole machining and deep hole maintenance. Single-camera vision presents promising prospects in deep hole measurement due to its simple structure and low-cost advantages. However, the measurement error caused by the heating of the imaging sensor makes it difficult to achieve the ideal measurement accuracy. To compensate for measurement errors induced by imaging sensor heating, this study proposes an error compensation method for laser and vision-based deep hole measurement instruments. This method predicts the pixel displacement of the entire field of view using the pixel displacement of fixed targets within the camera’s field of view and compensates for measurement errors through a perspective transformation. Theoretical analysis indicates that the perspective projection matrix changes due to the heating of the imaging sensor, which causes the thermally induced measurement error of the camera. By analyzing the displacement of the fixed target point, it is possible to monitor changes in the perspective projection matrix and thus compensate for camera measurement errors. In compensation experiments, using target displacement effectively predicts pixel drift in the pixel coordinate system. After compensation, the pixel error was suppressed from 1.99 pixels to 0.393 pixels. Repetitive measurement tests of the deep hole measurement instrument validate the practicality and reliability of compensating for thermal-induced errors using perspective transformation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3