Ammonia Detection by Electronic Noses for a Safer Work Environment

Author:

Reis Tiago1,Moura Pedro Catalão1ORCID,Gonçalves Débora2,Ribeiro Paulo A.1ORCID,Vassilenko Valentina1ORCID,Fino Maria Helena3ORCID,Raposo Maria1ORCID

Affiliation:

1. Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal

2. Institute of Physics of Sao Carlos, University of Sao Paulo, São Carlos 13566-590, Brazil

3. LASI—Associated Laboratory of Intelligent Systems, CTS—Centre for Technology and Systems, UNINOVA, Department of Electrotechnical and Computer Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal

Abstract

Providing employees with proper work conditions should be one of the main concerns of any employer. Even so, in many cases, work shifts chronically expose the workers to a wide range of potentially harmful compounds, such as ammonia. Ammonia has been present in the composition of products commonly used in a wide range of industries, namely production in lines, and also laboratories, schools, hospitals, and others. Chronic exposure to ammonia can yield several diseases, such as irritation and pruritus, as well as inflammation of ocular, cutaneous, and respiratory tissues. In more extreme cases, exposure to ammonia is also related to dyspnea, progressive cyanosis, and pulmonary edema. As such, the use of ammonia needs to be properly regulated and monitored to ensure safer work environments. The Occupational Safety and Health Administration and the European Agency for Safety and Health at Work have already commissioned regulations on the acceptable limits of exposure to ammonia. Nevertheless, the monitoring of ammonia gas is still not normalized because appropriate sensors can be difficult to find as commercially available products. To help promote promising methods of developing ammonia sensors, this work will compile and compare the results published so far.

Funder

Fundação para a Ciência e Tecnologia

CNPq

FAPESP

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3