Affiliation:
1. Grupo de Investigación BISITE, Universidad de Salamanca, 37008 Salamanca, Spain
2. ITAP (Instituto de las Tecnologías Avanzadas de la Producción), Universidad de Valladolid, 47011 Valladolid, Spain
Abstract
Livestock monitoring is a task traditionally carried out through direct observation by experienced caretakers. By analyzing its behavior, it is possible to predict to a certain degree events that require human action, such as calving. However, this continuous monitoring is in many cases not feasible. In this work, we propose, develop and evaluate the accuracy of intelligent algorithms that operate on data obtained by low-cost sensors to determine the state of the animal in the terms used by the caregivers (grazing, ruminating, walking, etc.). The best results have been obtained using aggregations and averages of the time series with support vector classifiers and tree-based ensembles, reaching accuracies of 57% for the general behavior problem (4 classes) and 85% for the standing behavior problem (2 classes). This is a preliminary step to the realization of event-specific predictions.
Funder
Centre for the Development of Industrial Technology
Spanish companies APLIFISA and COPASA
Junta de Castilla y León
European Regional Development Fund