Experimental Investigation into Deploying a Wi-Fi6 Mesh System for Underground Gold and Platinum Mine Stopes

Author:

Chetty Brenton Lloyd12ORCID,Walingo Tom Mmbasu1,Kruger Carel Phillip2,Isaac Sherrin John2

Affiliation:

1. Department of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa

2. Next Generation Enterprises and Institutions, Council for Scientific and Industrial Research, Pretoria 0001, South Africa

Abstract

Stopes suffer from unreliable wireless communication due to their harsh environment. There is a lack of confidence within industry regarding the effectiveness of existing solutions in providing reliable high-bandwidth performance in hard rock stopes. This work proposes that Wi-Fi6 is a good candidate for reliable high-bandwidth communications in underground hard rock stopes. Experiments in a tunnel and mine stope were conducted to evaluate the performance of Wi-Fi6 in terms of latency, jitter, and throughput. Different criteria, such as multi-hop systems, varying multipath, mesh routing protocols, and frequencies at different bandwidths, were used to evaluate performance. The results show that Wi-Fi6 performance is greater in stopes compared to tunnels. Signal quality evaluations were conducted using the Asus RT-AX53U running OpenWrt, and an additional experiment was conducted on the nrf7002dk running Zephyr OS to evaluate the power consumption of Wi-Fi6 against the industry standard for low-powered wireless communications, IEEE 802.15.4. Wi-Fi6 was found to be more power-efficient than IEEE 802.15.4 for Mbps communications. These experiments highlight the signal robustness of Wi-Fi6 in stope environments and also highlights its low-powered nature. This work also highlights the performance of the two most widely used open-source mesh routing protocols for Wi-Fi.

Funder

Council for Scientific and Industrial Research

Mandela Mining Precinct and South African Mining Extraction Research, Development & Innovation (SAMERDI) strategy

Department of Science and Innovation under the Foundational Digital Capabilities Research Programme in its Distributed Networks and Processes Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3