Affiliation:
1. Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
Abstract
In rock blasting for mining production, stress waves play a major role in rock fracturing, along with explosive gases. Better energy distribution improves fragmentation and safety, lowers production costs, increases productivity, and controls ore losses and dilution. Blast outcomes vary significantly depending on the choice of the explosive and the properties of the rock mass encountered. This study analyzes the effects of rock mass and explosive properties on blast outcomes via numerical simulation using data from the case study, and later validates the simulation results from the field blast fragmentation. The findings suggest that, for a given set of rock properties, the choice of explosive has a major influence on the resulting fragmentation. Strong explosives (high VOD and detonation pressure) favor large fracture extents in hard rocks, while weaker explosives offer a better distribution of explosive energy and fractures. The presence of rock structures such as rock contacts and joints influences the propagation of stress waves and fractures depending on the structures’ material properties, the intensity and orientations, and the direction and strength of the stress wave. When the stress wave encounters a contact depending on its direction, it is enhanced when traveling from soft to hard and attenuates in the opposite direction. The ability of the stress wave to cause fracturing on the opposite side of the contact depends on the intensity of the transmitted wave and the strength of the rock. Transmitted wave intensity is a function of the strength of the incident wave and the impedance difference between the interface materials. The presence of joints in the rock mass affects the propagation of the stress wave, mainly depending on the infill material properties and the angle at which the stress wave approaches the joint. Less compressible, higher stiffness joints transmit more energy. More energy is also transmitted in the areas where the stress wave hits the joint perpendicularly. Joints parallel to the free face offer additional fracturing on the opposite side of the joint. Other parameters, such as the joint width, continuity, fracture frequency, and the distance from the charge, enhance the effects. To achieve effective fragmentation, the blast design should mitigate the effect of variability in the rock mass via explosive selection and pattern design to ensure adequate energy distribution within the limits of geometric design.
Reference35 articles.
1. Numerical investigation of blasting-induced crack initiation and propagation in rocks;Zhu;Int. J. Rock Mech. Min. Sci.,2007
2. Hustrulid, W.A. (1999). Blasting Principles for Open Pit Mining, CRC Press.
3. Numerical simulation of stress wave induced fractures in rock;Mohanty;Int. J. Impact Eng.,2012
4. Modelling the size of the crushed zone around a blasthole;Esen;Int. J. Rock Mech. Min. Sci.,2003
5. The law of blast stress wave propagation and fracture development in soft and hard composite rock;Ding;Sci. Rep.,2022
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献