A Performance Improvement Strategy for Concrete Damage Detection Using Stacking Ensemble Learning of Multiple Semantic Segmentation Networks

Author:

Li ShengyuanORCID,Zhao Xuefeng

Abstract

Semantic segmentation network-based methods can detect concrete damage at the pixel level. However, the performance of a single semantic segmentation network is often limited. To improve the concrete damage detection performance of a semantic segmentation network, a stacking ensemble learning-based concrete crack detection method using multiple semantic segmentation networks is proposed. To realize this method, a database including 500 images and their labels with concrete crack and spalling is built and divided into training and testing sets. At first, the training and prediction of five semantic segmentation networks (FCN-8s, SegNet, U-Net, PSPNet and DeepLabv3+) are respectively implemented on the built training set according to a five-fold cross-validation principle, where 80% of the training images are used in the training process, and 20% training images are reserved. Then, in predicting the results of reserved training images from trained semantic segmentation networks, the class labels of all pixels are collected, and then four softmax regression-based ensemble learning models are trained using the collected class labels and their true classification labels. The trained ensemble learning models are applied to regressed testing results of semantic segmentation network models. Compared with the best single semantic segmentation network, the best ensemble learning model provides performance improvement of 0.21% PA, 0.54% MPA, 3.66% MIoU, and 0.12% FWIoU, respectively. The study results show that the stacking ensemble learning strategy can indeed improve concrete damage detection performance through ensemble learning of multiple semantic segmentation networks.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3