An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability

Author:

Bansal HunishORCID,Chinagundi Basavraj,Rana Prashant SinghORCID,Kumar NeerajORCID

Abstract

The purpose of this study was to determine electromyographically if there are significant differences in the movement associated with the knee muscle, gait, leg extension from a sitting position and flexion of the leg upwards for regular and abnormal sEMG data. Surface electromyography (sEMG) data were obtained from the lower limbs of 22 people during three different exercises: sitting, standing, and walking (11 with and 11 without knee abnormality). Participants with a knee deformity took longer to finish the task than the healthy subjects. The sEMG signal duration of patients with abnormalities was longer than that of healthy patients, resulting in an imbalance in the obtained sEMG signal data. As a result of the data’s bias towards the majority class, developing a classification model for automated analysis of such sEMG signals is arduous. The sEMG collected data were denoised and filtered, followed by the extraction of time-domain characteristics. Machine learning methods were then used for predicting the three distinct movements (sitting, standing, and walking) associated with electrical impulses for normal and abnormal sets. Different anomaly detection techniques were also used for detecting occurrences in the sEMG signals that differed considerably from the majority of data and were hence used for enhancing the performance of our model. The iforest anomaly detection technique presented in this work can achieve 98.5% accuracy on the light gradient boosting machine algorithm, surpassing the previous results which claimed a maximum accuracy of 92.5% and 91%, improving accuracy by 6–7% for classification of knee abnormality using machine learning.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3