Water Quality Prediction Based on LSTM and Attention Mechanism: A Case Study of the Burnett River, Australia

Author:

Chen HongleiORCID,Yang Junbo,Fu Xiaohua,Zheng Qingxing,Song Xinyu,Fu Zeding,Wang Jiacheng,Liang Yingqi,Yin Hailong,Liu Zhiming,Jiang Jie,Wang He,Yang Xinxin

Abstract

Prediction of water quality is a critical aspect of water pollution control and prevention. The trend of water quality can be predicted using historical data collected from water quality monitoring and management of water environment. The present study aims to develop a long short-term memory (LSTM) network and its attention-based (AT-LSTM) model to achieve the prediction of water quality in the Burnett River of Australia. The models developed in this study introduced an attention mechanism after feature extraction of water quality data in the section of Burnett River considering the effect of the sequences on the prediction results at different moments to enhance the influence of key features on the prediction results. This study provides one-step-ahead forecasting and multistep forward forecasting of dissolved oxygen (DO) of the Burnett River utilizing LSTM and AT-LSTM models and the comparison of the results. The research outcomes demonstrated that the inclusion of the attention mechanism improves the prediction performance of the LSTM model. Therefore, the AT-LSTM-based water quality forecasting model, developed in this study, demonstrated its stronger capability than the LSTM model for informing the Water Quality Improvement Plan of Queensland, Australia, to accurately predict water quality in the Burnett River.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3