Optimization of Tree-like Support for Titanium Overhang Structures Produced via Electron Beam Melting

Author:

Ameen Wadea,Al-Ahmari AbdulrahmanORCID,Mian Syed HammadORCID,Mohammed Muneer Khan,Kaid Husam,Abdulhameed Osama

Abstract

Support structures play a significant role in all additive manufacturing (AM) processes. The type of supports, as well as their size, placement, and other characteristics, greatly determine how effectively and efficiently the AM process works. In order to reduce the amount of material and post-processing requirements, tree-like support structures are revolutionary support structures that have so far been employed in polymer AM and have shown good performance. However, they have not yet been investigated for metal AM processes. Therefore, this study aims to propose and optimize the tree-like support structures for additively manufactured metal (Ti6Al4V) overhangs. The overhang specimens are fabricated using Electron Beam Melting (EBM) with a variety of design and process parameters. The effect of design and process structure parameters on the performance of the support is evaluated and optimized experimentally. MOGA-ll is used to perform multi-objective optimization. The results have shown the feasibility of using tree-like support structures in metal AM. The findings of this study demonstrate how important it is to choose the proper minimum distance between rows in order to reduce support volume and support removal time. Furthermore, the most crucial factors in limiting the overhang deviation are the beam current and beam scanning speed. Additionally, the data demonstrate that lowering the beam current and raising the beam scanning speed significantly reduce deformation. Consequently, it is critical to find the right balance between beam current, beam scanning speed, minimum spacing between rows, and branch top diameters that can produce the lowest support volume, lowest support removal time, and least amount of deformation.

Funder

Raytheon Chair for Systems Engineering

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3