Response of Winter Wheat Production to Climate Change in Ziway Lake Basin

Author:

Hordofa Aster TesfayeORCID,Leta Olkeba TolessaORCID,Alamirew TenaORCID,Chukalla Abebe Demissie

Abstract

The crop production and limited freshwater resources in the Central Rift Valley (CRV) Lake Basin of Ethiopia have been facing pressure from warmer and drier climates. Thus, irrigation with the goal of increasing water use efficiency and the productivity of rainfed agriculture is vital to address climate effects, water scarcity, and food security. This study is aimed at assessing the sustainability of winter wheat production under climate change, and irrigation as an adaptation measure to improve yield, crop water productivity (CWP), and irrigation water productivity (IWP) in the CRV of Ethiopia. AquaCrop is applied to evaluate the effects of climate change and simulate irrigation as an adaptation measure. The analysis covers the baseline (1981–2020) and future (2026–2095) periods with each period categorized into three rainfall years (wet, normal, and dry). The future period is described using two representatives’ concentration pathways (RCP4.5 and PCP8.5) scenarios. The results under rainfed and future climate conditions show that the winter wheat yield and CWP are projected to be lowered as compared to the baseline period. Most importantly, a significant reduction in wheat yield and CWP is noticed during the dry years (−60% and −80%) compared to the wet years (−30% and −51%) and normal years (−18% and −30%), respectively. As compared to rainfed agriculture, irrigation significantly reduces the risk of wheat yield decline and improves the CWP. Irrigation is also able to improve the CWP of rainfed wheat production ranging from 0.98–1.4 kg/m3 to 1.48–1.56 kg/m3. A projected CWP improvement of 1.1–1.32 kg/m3 under irrigation is possible from 0.87–1.1 kg/m3 under rainfed conditions. The study concludes that optimizing irrigation as a climate-change-adapting strategy in the CRV has a more pronounced positive impact to the rainfed production system, especially for the dry and normal years.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3