Efficient Degradation of Carbendazim by Ferrate(VI) Oxidation under Near-Neutral Conditions

Author:

Li Yu,Cheng HefaORCID

Abstract

Carbendazim (CBZ), a widely used fungicide in agriculture, is frequently detected in aquatic environment and causes significant concerns because of its endocrine-disrupting activity. This study investigated the degradation kinetics of CBZ in ferrate (Fe(VI)) oxidation, the influence of water matrices, and the transformation pathways of CBZ. The second-order rate constant for the reaction between CBZ and Fe(VI) decreased from 88.0 M−1·s−1 to 1.6 M−1·s−1 as the solution pH increased from 6.2 to 10.0. The optimum reaction conditions were obtained through response surface methodology, which were pH = 7.8 and [Fe(VI)]/[CBZ] = 14.2 (in molarity), and 96.9% of CBZ could be removed under such conditions. Cu2+ and Fe3+ accelerated the degradation of CBZ by Fe(VI) oxidation; common cations and anions found in natural water had no significant effect, while the presence of humic acid also accelerated the degradation of CBZ. Based on the degradation products identified, degradation of CBZ in Fe(VI) oxidation proceeded via three pathways: namely, hydroxylation, removal of the methoxyl group, and cleavage of the C–N/C=N bond. The initial reaction site of CBZ oxidation by Fe(VI) was also supported by the atomic partial charge distribution on the CBZ molecule obtained from density functional theory (DFT) calculations. CBZ in natural water matrices was efficiently removed by Fe(VI) oxidation under near-neutral conditions, indicating that Fe(VI) oxidation could be a promising treatment option for benzimidazole fungicides.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3