Glacier Boundary Mapping Using Deep Learning Classification over Bara Shigri Glacier in Western Himalayas

Author:

Sood Vishakha,Tiwari Reet KamalORCID,Singh SartajvirORCID,Kaur RavneetORCID,Parida Bikash RanjanORCID

Abstract

Glacier, snow, and ice are the essential components of the Himalayan cryosphere and provide a sustainable water source for different applications. Continuous and accurate monitoring of glaciers allows the forecasting analysis of natural hazards and water resource management. In past literature, different methodologies such as spectral unmixing, object-based detection, and a combination of various spectral indices are commonly utilized for mapping snow, ice, and glaciers. Most of these methods require human intervention in feature extraction, training of the models, and validation procedures, which may create bias in the implementation approaches. In this study, the deep learning classifier based on ENVINet5 (U-Net) architecture is demonstrated in the delineation of glacier boundaries along with snow/ice over the Bara Shigri glacier (Western Himalayas), Himachal Pradesh, India. Glacier monitoring with Landsat data takes the advantage of a long coverage period and finer spectral/spatial resolution with wide coverage on a larger scale. Moreover, deep learning utilizes the semantic segmentation network to extract glacier boundaries. Experimental outcomes confirm the effectiveness of deep learning (overall accuracy, 91.89% and Cohen’s kappa coefficient, 0.8778) compared to the existing artificial neural network (ANN) model (overall accuracy, 88.38% and kappa coefficient, 0.8241) in generating accurate classified maps. This study is vital in the study of the cryosphere, hydrology, agriculture, climatology, and land-use/land-cover analysis.

Funder

Science and Engineering Research Board

Department of Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3