An Effective Secured Dynamic Network-Aware Multi-Objective Cuckoo Search Optimization for Live VM Migration in Sustainable Data Centers

Author:

Venkata Subramanian N.ORCID,Shankar Sriram V. S.ORCID

Abstract

With the increasing use of cloud computing by organizations, cloud data centers are proliferating to meet customers’ demands and host various applications using virtual machines installed in physical servers. Through Live Virtual Machine Migration (LVMM) methods, cloud service providers can provide improved computing capabilities for server consolidation maintenance of systems and potential power savings through a reduction in the distribution process to customers. However, Live Virtual Machine Migration has its challenges when choosing the best network path for maximizing the efficiency of resources, reducing consumption, and providing security. Most research has focused on the load balancing of resources and the reduction in energy consumption; however, they could not provide secure and optimal resource utilization. A framework has been created for sustainable data centers that pick the most secure and optimal dynamic network path using an intelligent metaheuristic algorithm, namely, the Network-aware Dynamic multi-objective Cuckoo Search algorithm (NDCS). The developed hybrid movement strategy enhances the search capability by expanding the search space and adopting a combined risk score estimation of each physical machine (PM) as a fitness criterion for ensuring security with rapid convergence compared to the existing strategies. The proposed method was assessed using the Google cluster dataset to ascertain its worthiness. The experimental results show the supremacy of the proposed method over existing methods by ensuring services with a lower total migration time, lower energy consumption, less makespan time, and secure optimum resource utilization.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IDBNWP: Improved deep belief network for workload prediction: Hybrid optimization for load balancing in cloud system;Multimedia Tools and Applications;2024-06-24

2. Evaluation of Secure Methods for Migrating Virtual Machines to the Cloud;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

3. Energy Efficient Approach for Virtual Machine Placement Using Cuckoo Search;International Conference on Innovative Computing and Communications;2023-10-26

4. A Comprehensive Review of Cloud Computing Virtual Machine Consolidation;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3