Buffer Capacity of Steel Shed with Two Layer Absorbing System against the Impact of Rockfall Based on Coupled SPH-FEM Method

Author:

Liu ChunORCID,Liao Hongjun

Abstract

This study aimed to find the optimal thickness combination of the two-layered absorbing system combinated with an expanded polystyrene (EPS) cushion and a soil layer in a steel shed under dynamic loadings. The coupled Smooth Particle Hydrodynamic method (SPH) and Finite Element Method (FEM) were introduced to simulate the impact of the rockfall against the steel shed with a two-layer absorbing system. By comparing the numerical results with test data, the coupled numerical model was well validated. Through the verified numerical model, a series of numerical experiments were carried out to find the optimal combination for the two-layered absorbing system. The values of the EPS layer thickness as a percentage of the total thickness were set as 0% (P1), 20% (P2), 40% (P3), 60% (P4), 80% (P5), and 100% (P6). The results show that the coupled FEM–SPH method was an effective method to simulate rockfall impacting the steel rock shed; P4 (0.6 m thickness EPS cushion and 0.9 m thickness soil layer) was the most efficient combination, which can significantly reduce the structural displacement response by 43%. A two-layered absorbing system can effectively absorb about 90% of the total energy. The obtained results yield scientifically sound guidelines for further research on the design of steel sheds against rockfall.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meshing impact analysis of the gear and rack of the pumping machine based on the SPH–FEM coupling method;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3