Sawdust Amendment in Agricultural and Pasture Soils Can Reduce Iodine Losses

Author:

Mohiuddin Muhammad,Hussain ZahidORCID,Abbasi Asim,Ali JawadORCID,Irshad Muhammad,Tariq Muhammad Atiq Ur RehmanORCID,Intisar Anum,Hina Aiman,Zaman Qamar UzORCID,Ng Anne Wai ManORCID

Abstract

Iodine loss is common in the soil of hilly regions due to higher precipitation rates and steeper slopes. Iodine deficiency in soil reduces iodine’s bioavailability to fruits and vegetables and consequently may contribute to health complications. However, the iodine retention of soils after the addition of selected organic and inorganic amendments has not been studied. Therefore, a study was carried out to investigate iodine loss during surface runoff. For this purpose, a soil amendment (namely, sawdust, charcoal, wood ash, lime or gypsum) was applied separately to pasture and agricultural soils under natural rainfall conditions. The soil was fertigated with iodine in the form of potassium iodide (KI) at the rate of 200 ppm. Surface runoff was related to soil properties. Results showed that iodine content in surface runoff was linearly related with soil pH (R2 = 0.89, p < 0.05) and inversely related with soil organic carbon (R2 = −0.76, p < 0.05). Soils amended with sawdust had significantly reduced iodine content in runoff. A higher amount of iodine was lost via surface runoff from soil after inorganic amendment. Soil amendments were varied for iodine retention in soil in the order of sawdust > charcoal > wood ash > lime > gypsum. The study results indicated that organic amendments, especially sawdust, improved soil properties and increased the iodine retention capacity of soils.

Funder

Charles Darwin University, Australia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference52 articles.

1. Stunting, wasting, and micronutrient deficiency disorders;Caulfield,2006

2. Iodine dynamics in soils

3. Iodine Status in Europe in 2014

4. Iodine Deficiency and Excess in Children: Worldwide Status in 2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3