Analytical Methods for Physicochemical Characterization and Toxicity Assessment of Atmospheric Particulate Matter: A Review

Author:

Agibayeva Akmaral,Guney MertORCID,Karaca FerhatORCID,Kumisbek Aiganym,Kim Jong RyeolORCID,Avcu EgemenORCID

Abstract

Particle-bound pollutants are a critical risk factor for human respiratory/cardiovascular conditions. A comprehensive analysis of the physicochemical characteristics of PM is often challenging since it requires combining different practical methods with a good understanding the of characterization outputs. The present review aims to (1) provide a comprehensive assessment of the underlying mechanisms of PM cytotoxicity and the related biological response; (2) evaluate the selected methods for PM characterization in terms of outputs, technical aspects, challenges, and sample preparation; (3) present effective means of studying PM physicochemical toxicity and composition; and (4) provide recommendations for enhancing the human health risk assessment. The cellular response to potentially toxic elements in PM is complex to understand as exposure includes systemic inflammation, increased ROS accumulation, and oxidative stress. A comprehensive toxicity assessment requires blending morphological features and chemical composition data. For the morphological/chemical characterization, we recommend first using SEM-EDS as a practical method for the single-particle analysis. Then, the bulk chemistry of PM can be further studied using either a dry analysis (e.g., XRF) or wet analysis techniques (e.g., ICP and IC). Finally, when used on a need basis, the reviewed complementary laboratory methods may further add valuable information to the characterization. The accuracy of the human health risk assessment may be improved using bioaccessible/soluble fractions of the contaminants instead of the total contaminant concentration. Having an integrated understanding of the covered analytical methods along with the health risk assessment guidelines would contribute to research on atmospheric chemistry, molecular biology, and public health while helping researchers better characterize human exposure to PM and the associated adverse health effects.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3