Path Planning of Electric VTOL UAV Considering Minimum Energy Consumption in Urban Areas

Author:

Li YafeiORCID,Liu Minghuan

Abstract

As a new mode of transportation in the future, electric vertical take-off and landing unmanned aerial vehicles (eVTOL UAV) can undertake the task of logistics distribution and carry people in urban areas. It is challenging to carry out research designed to plan the path of eVTOL UAVs which can have a safe and sustainable operation mode in urban areas. Therefore, this work proposes a method for planning an obstacle-free path for eVTOL UAVs in urban areas with the goal of minimizing energy consumption. It aims to improve the safety and sustainability of eVTOL UAV operations. Based on variations of air density with height, a more accurate formula for calculating battery energy consumption of eVTOL UAV is derived. It is used in the vertical takeoff and landing phase and horizontal flight phase, respectively. Considering the influence of buildings on eVTOL UAV operation, a path planning method applicable to complex urban environments is proposed. The safe nodes of eVTOL UAV flight are obtained by using Voronoi diagrams based on building locations. Then, the complete shortest and obstacle-free path is obtained by using a Dubins geometric path and Floyd algorithm. After obtaining the obstacle-free paths for all flight height zones, the battery energy consumption of the eVTOL UAV in each flight height zone is calculated. Then, the flight height with the minimum energy consumption is obtained. The simulation results show that the path length obtained by the proposed path planning method is shorter than that obtained by particle swarm optimization; the total battery energy consumption changes in the same pattern in the low-altitude areas and high-altitude areas; the difference between the maximum and minimum energy consumption in the small area enables the eVTOL UAV to cover about 350 m more, and about 420 m more in the large area. Therefore, in future high-frequency UAV mission flights, choosing the altitude with the lowest energy consumption can reduce UAV operator costs. It can also significantly increase UAV transport range and make UAVs operate more sustainably.

Funder

MOE (Ministry of Education in China) Youth Fund Project of Humanities and Social Sciences

General Program of Tianjin Applied Basic Research Diversified Investment Fund

Scientific Research Program of Tianjin Municipal Education Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference39 articles.

1. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges

2. Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges

3. Future urban air mobility management: Review;Zhang;Acta Aeronaut. Astronaut. Sin.,2021

4. Modelling and Performance Impact of Different Battery Architectures for Fixed-Wing eVTOL UAV;Stahl;Proceedings of the AIAA Scitech 2020 Forum,2020

5. Performance analysis of propulsion system of miniature electric-powered vertical takeoff and landing air vehicles;Wang;J. Natl. Univ. Def. Technol.,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3