Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach

Author:

Albatayneh AimanORCID,Assaf Mohammed N.ORCID,Albadaineh Renad,Juaidi AdelORCID,Abdallah RamezORCID,Zabalo AlbertoORCID,Manzano-Agugliaro FranciscoORCID

Abstract

Due to its excessive energy consumption, the building sector contributes significantly to greenhouse gas (GHG) emissions. The type of thermal comfort models used to maintain the comfort of occupants has a direct influence on forecasting heating and cooling demands and plays a critical role in reducing actual energy usage in the buildings. In this research, a typical residential building was simulated to compare the heating and cooling loads in four different Jordanian climates when using an adaptive thermal model versus the constant setting of temperature limits for air-conditioning systems (19–24 °C). The air-conditioning system with constant temperature settings worked to sustain thermal comfort inside the building, resulting in a significantly increased cooling and heating load. By contrast, significant energy savings were achieved using the temperature limits of an adaptive thermal model. These energy savings equated to 1533, 6276, 3951, and 3353 kWh, which represented 29.3%, 80.5%, 48.5%, and 67.5% of the total energy used for heating and cooling for zones one, two, three, and four, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3