Intelligent Adaptive Optimisation Method for Enhancement of Information Security in IoT-Enabled Environments

Author:

Singh Shailendra Pratap,Alotaibi YouseefORCID,Kumar GyanendraORCID,Rawat Sur SinghORCID

Abstract

The usage of the Internet increased dramatically during the start of the twenty-first century, entangling the system with a variety of services, including social media and e-commerce. These systems begin producing a large volume of data that has to be secured and safeguarded from unauthorised users and devices. In order to safeguard the information of the cyber world, this research suggests an expanded form of differential evolution (DE) employing an intelligent mutation operator with an optimisation-based design. It combines a novel mutation technique with DE to increase the diversity of potential solutions. The new intelligent mutation operator improves the security, privacy, integrity, and authenticity of the information system by identifying harmful requests and responses and helping to defend the system against assault. When implemented on an e-commerce application, the performance of the suggested technique is assessed in terms of confidentiality, integrity, authentication, and availability. The experimental findings show that the suggested strategy outperforms the most recent evolutionary algorithm (EA).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

1. Enabling Machine Learning with Service Function Chaining for Security Enhancement at 5G Edges

2. Efficient Cache Consistency Management for Transient IoT Data in Content-Centric Networking

3. A Review of Information Security using Cryptography Technique;Sharma;Int. J. Adv. Res. Comput. Sci.,2017

4. Understanding Cryptography: A Textbook for Students and Practitioners;Preneel,2010

5. Introduction t:o Modern Cryptography;Katz,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3