Abstract
Next to environmental aspects, establishing areas for safe and economically viable automated driving in mixed-traffic settings is one major challenge for sustainable development of Autonomous Vehicles (AVs). This work investigates safety in the interactions between AVs, human-driven vehicles, and vulnerable road users, including cyclists and pedestrians, within a simulated urban environment in the Dutch city of Rotterdam. New junction and pedestrian models are introduced, and virtual AVs with an occlusion-aware driving system are deployed to deliver cargo autonomously. The safety of applying this autonomous cargo delivery service is assessed using a large set of Surrogate Safety Indicators (SSIs). Furthermore, Macroscopic Fundamental Diagrams (MFDs) and travel time loss are incorporated to evaluate the network efficiency. By assessing the impact of various measures involving Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Everything (V2X) communications, infrastructure modifications, and driving behavior, we show that traffic safety and network efficiency can be achieved in a living lab setting for the considered case. Our findings further suggest that V2X gets implemented, new buildings are not placed close to intersections, and the speed limit of non-arterial roads is lowered.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献