Experimental and Numerical Study of Flexural Stiffness Performance of Ultra-Thin, Prefabricated, and Laminated Slab Base Slabs

Author:

Chen Yihu,Chen Yiyan,Lu Dan,Zhang Min,Lu Pengyuan,Chen Jingyi

Abstract

To study the effects of different parameters on the short-term stiffness and cracking load of precast laminated base slabs, static loading experiments were conducted on five base slabs to obtain their damage patterns, stiffness changes, and deflection. The parametric research on the base slab’s short-term stiffness and cracking load was followed by changing the parameters, such as the truss height, truss spacing, and base slab thickness, using finite element refinement modeling based on test cases. The results show: (1) the ductility, short-term stiffness, and cracking load of the base slab can be significantly improved by reducing the truss spacing, and its short-term stiffness and cracking load with the 300 mm truss spacing are relatively improved by comparing to the 60 mm one; (2) increasing the height of truss improves the short-term stiffness, cracking load, and ductility of base slab; however, the improvements decrease with the increase of truss height. With consideration of the cost and construction requirements, the proper truss spacing is provided.

Funder

Guangxi Key Research Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference28 articles.

1. Jiang, L., Li, Z., Li, L., and Gao, Y. Constraints on the promotion of prefabricated construction in China. Sustainability, 2018. 10.

2. Summary of Study on Composite Concrete Slabs;Wang;Appl. Mech. Mater.,2013

3. Research progress on reinforced concrete laminated slab in China;Li;Appl. Mech. Mater.,2012

4. Pre-Stressed Concrete Base Slabs for Laminated Slabs, 2007.

5. Technical Regulations for Assembled Concrete Structures, 2014.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3