Characterizing the Long-Term Landscape Dynamics of a Typical Cloudy Mountainous Area in Northwest Yunnan, China

Author:

Chen Youjun,Hu Xiaokang,Zhang Yanjie,Feng Jianmeng

Abstract

Detailed knowledge of landscape dynamics is crucial for many applications, from resource management to ecosystem service assessments. However, identifying the spatial distribution of the landscape using optical remote sensing techniques is difficult in mountainous areas, primarily due to cloud cover and topographic relief. Our study uses stable classification samples from mountainous areas to investigate an integrated approach that addresses large volumes of cloud-cover data (with associated data gaps) and extracts landscape time series (LTS) with a high time–frequency resolution. We applied this approach to map LTS in a typical cloudy mountainous area (Erhai watershed in northwestern Yunnan, China) using dense Landsat stacks, and then we also used the classified results to investigate the spatial–temporal landscape changes in the study area at biennial intervals. The overall accuracy of the landscape classification ranged from 81.75% to 88.18%. The results showed highly dynamic processes in the landscape throughout the study period. Forest was the main land cover type, covering approximately 39.19% to 41.68% of the total study area. Alpine meadow showed fluctuating trends, with a net loss of 11.22% and an annual reduction rate of −0.4%. Shrub cover increased by 1.26%, and water bodies showed a small decrease in area, resulting in an overall net change of −0.03%. Built-up land and farmland areas continued to expand, and their annual growth rates were 1.52% and 1.06%, respectively. Bare land showed the highest loss, with a net change of 228.97 km2. In the Erhai watershed, all the landscape classes changed or transitioned into other classes, and a substantial decrease in bare land occurred. The biennial LTS maps allow us to fully understand the spatially and temporally complex change processes occurring in landscape classes; these changes would not be observable at coarse temporal intervals (e.g., 5–10 years). Our study highlights the importance of increasing the temporal resolution in landscape change studies to support sustainable land resource management strategies and integrate landscape planning for environmental conservation.

Funder

Yunnan Provincial Basic Research Joint Special Fund Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3