The Effect of Sodium and Magnesium Sulfate on Physico-Mechanical and Microstructural Properties of Kaolin and Ceramic Powder-Based Geopolymer Mortar

Author:

Kaya MehmetORCID,Köksal FuatORCID,Nodehi MehrabORCID,Bayram Muhammed,Gencel Osman,Ozbakkaloglu TogayORCID

Abstract

Recent trends in reducing the ecological footprint of the construction industry have increased the attention surrounding the use of alternative binding systems. Among the most promising are geopolymer binders, which were found to have the capability to substantially reduce the environmental impact of Portland cement use. However, even the use of this alternative binding system is known to be heavily dependent on the use of industrial byproducts, such as precursors and an alkaline source, produced through an energy intensive process. To address this and provide a greener route for this binding system, this study adopts the use of natural kaolin and raw ceramic powder as the main precursors. The activation process is performed by using solid potassium hydroxide in conjunction with sodium and magnesium sulfate, which are naturally available, to produce geopolymers. To assess the resulting geopolymer samples, 28 mixes are produced and a series of physico-mechanical and microstructural analyses is conducted. The results show that the use of ceramic powder can improve the physico-mechanical properties by reducing porosity. This, however, requires a relatively higher alkalinity for activation and strength development. These findings are further confirmed with the XRD and FTIR results. Nonetheless, the use of ceramic powder with sodium and magnesium sulfate is found to result in a more coherent and homogenous microstructure, compared to the geopolymers produced with potassium hydroxide and kaolin. The findings of this study point to the suitability of using sodium and magnesium sulfate for the cleaner production of kaolin and ceramic powder-based geopolymers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3