Early Detection of Bacterial Blight in Hyperspectral Images Based on Random Forest and Adaptive Coherence Estimator

Author:

Wu Yuqiang,Cao Yifei,Zhai Zhaoyu

Abstract

Rice disease detection is of great significance to rice disease management. It is difficult to identify the rice leaves with different colors in different disease periods by RGB image and without aided eyes. Traditional equipment and methods are relatively inefficient in meeting the needs of current disease detection. The accurate and efficient detection the infected areas from hyperspectral images has become a primary concern in current research. However, current spectral target detection research pays less attention to the time and computing resources consumed by detection. A disease detection method based on random forest (RF) and adaptive coherence estimator (ACE) is proposed here. Firstly, based on the spectral differences between diseased and healthy leaves, 18 characteristic spectral wavelengths with the highest importance were selected by an RF algorithm, and the spectral images of those characteristic wavelengths were synthesized. Then, the ACE model was established for the disease recognition of full wavelength spectral images, characteristic wavelength spectral images, and RGB images. At the same time, three other familiar target detection methods were selected as the control experiments. The detection results showed a similarity between the detection performance of the four detection methods for full wavelength spectral image and characteristic wavelength spectral image. This detection performance was higher than that of the RGB image, indicating that characteristic wavelength spectral image can replace full wavelength spectral image for disease detection. The detection performance of the ACE algorithm was better than other algorithms. The detection accuracy of 18 characteristic wavelengths was 97.41%. Compared with the hyperspectral full wavelength image detection results, the accuracy decreased by 1.12%, and the detection time decreased by 2/3, which greatly reduced the detection time. Based on these results, the target detection method combining the RF algorithm and the ACE algorithm can effectively and accurately detect rice bacterial blight disease, which provides a new method for automatic detection of plant disease in the field.

Funder

National First-class Undergraduate Major (Network Security and Law enforcement) Construction Projec

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3