Acoustic Emission Waveform Characteristics of Red Sandstone Failure under Uniaxial Compression after Thermal Damage

Author:

Zhang Herui,Guo Weihong

Abstract

During the exploitation of deep resources, rocks are often in a high-temperature, high-pressure environment. It is of great significance to study the acoustic emission (AE) characteristics of thermal damaged rock under load to improve the accuracy of monitoring in practical engineering. In this paper, sandstone was heated at different temperatures, before a uniaxial compression test was performed and the AE in the process was monitored. The results show that the strength and AE energy of sandstone decrease gradually with an increase in heating temperature. Through frequency domain analysis of the AE waveform at the time of failure, it was found that the frequency and intensity of AE also showed a downward trend with an increase in temperature. In addition, multifractal theory is introduced to deconstruct the waveform data. The multifractal characteristics of the waveforms decrease with an increase in temperature. It provides new parameters for waveform analysis, which can be combined with frequency analysis as parameters to more accurately identify rock failure in engineering practice. The attenuation of AE of thermally damaged sandstone may be related to an increase in porosity and a decrease in elastic energy release.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3