Uranium and Nickel Partitioning in a Contaminated Riparian Wetland

Author:

Lin Peng1,Boyanov Maxim I.23ORCID,O’Loughlin Edward J.2ORCID,Xing Wei1,Kemner Kenneth M.2,Seaman John1,Simner Steven P.4,Kaplan Daniel I.1

Affiliation:

1. Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29803, USA

2. Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA

3. Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria

4. Savannah River Mission Completion, Aiken, SC 29803, USA

Abstract

Uranium (U) and nickel (Ni) released 50 years ago have been immobilized in the Tims Branch wetlands located on the Savannah River Site in the United States. Sediments were collected from seven locations to identify the factors responsible for this attenuation. Ni and U contents in the solids were significantly correlated, suggesting that depositional as opposed to chemical processes contributed to their spatial distribution. Based on sequential extractions, 63 ± 16% of the U was partitioned into the organic fraction, whereas Ni was distributed between several sediment fractions. An inverse pH-organic matter (OM) correlation and positive correlations of OM with total U and organic-bound U/Ni suggest that increased OM preservation and binding to the mineral surfaces were likely responsible for Ni- and especially U-sediment retention (Tims Branch pH = 4.84 ± 0.68). EXAFS analysis indicated the predominance of U(VI) coordinated with clay minerals (~65%), together with ~35% coordinated to either OM (in areas with elevated OM levels) or iron oxides. The desorption-Kd coefficients of U (3972 ± 1370 L/kg) and Ni (30 ± 8 L/kg) indicate that dissolved Ni poses a greater long-term risk than dissolved U for migrating downstream. This study suggests that a delicate balance of geochemical properties controls whether wetlands behave as sinks or sources of contaminants.

Funder

Environmental Systems Science Program, Office of Science, Department of Energy

Cooperative Agreement

Serving Institutions Partnership Program

Advanced Photon Source, a DOE Office of Science User Facility

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3