Reservoir Petrofacies Predicted Using Logs Data: A Study of Shale Oil from Seven Members of the Upper Triassic Yanchang Formation, Ordos Basin, China

Author:

Meng Kun1,Wang Ming2,Zhang Shaohua3,Xu Pengye4,Ji Yao1,Meng Chaoyang1,Zhan Jie5,Yu Hongyan1

Affiliation:

1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China

2. Research Institute of Petroleum Exploration and Development, SINOPEC, Beijing 100083, China

3. Research Institute of Exploration & Development, Changqing Oilfield, PetroChina, Xi’an 710018, China

4. Exploration and Development Research Institute, Shengli Oilfield Company, SINOPEC, Dongying 257015, China

5. School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 257015, China

Abstract

The identification and prediction of petrofacies plays a crucial role in the study of shale oil and gas “sweet spots”. However, the petrofacies identified through core and core test data are not available for all wells. Therefore, it is essential to establish a petrofacies identification model using conventional well logging data. In this study, we determined the petrofacies of shale oil reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China, based on scanning electron microscopy, core porosity and total organic carbon (TOC), and brittleness index calculations from X-ray diffraction (XRD) experiments conducted on seven members of the formation. Furthermore, we compared the interpreted logs with the raw well logs data clustered into electrofacies in order to assess their compliance with the petrofacies, using the Multi-Resolution Graph-Based Clustering (MRGC) method. Through an analysis of pore structure type, core porosity, TOC, and brittleness index, we identified four types of lithofacies with varying reservoir quality: PF A > PF B > PF C > PF D. The compliance of the clustered electrofacies with the petrofacies obtained from the interpreted logs was found to be 85.42%. However, the compliance between the clustered electrofacies and the petrofacies obtained from the raw well logs was only 47.92%. Hence, the interpreted logs exhibit a stronger correlation with petrofacies characterization, and their utilization as input data is more beneficial in accurately predicting petrofacies through machine learning algorithms.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

University Association for Science and Technology

Changqing Oilfield Company, PetroChina

Northwest University

Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3