Perovskite Type B-CaTiO3 Coupled with Graphene Oxide as Efficient Bifunctional Composites for Environmental Remediation

Author:

Altin Ilknur1ORCID

Affiliation:

1. Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Turkey

Abstract

To prepare boron doped perovskite CaTiO3 nanocubes coupled with graphene oxide (B-CaTiO3/GO), B-CaTiO3 photocatalyst was initially synthesized by the solvothermal method and subsequently attached on GO by a simple hydrothermal process. The phase structure and optical features of the prepared materials were efficiently characterized by several techniques. The XRD patterns indicated that boron doping could not give rise to lattice disruption of CaTiO3. The results of XPS, HRTEM and Raman measurements revealed that the presence of B-CaTiO3 is anchored on the surface of GO effectively. The morphology of the B-CaTiO3/5GO was nanocube particles. The photocatalytic capacity of B-CaTiO3/GO nanocomposites was determined by investigating the degradation of a model dye, methylene blue (MB). Their degradation performance could be enhanced by altering the ratio between B-CaTiO3 and GO. The most effective GO incorporation is 5 wt%, and at this loading percentage, B-CaTiO3/GO nanocomposite showed improved photocatalytic activity compared with CaTiO3 and B-CaTiO3 photocatalyst, which could be attributed to the synergistic efficacy of the adsorbed MB molecule on the GO followed by their degradation after 180 min of visible light. Additionally, the active species trapping tests confirm the dominant role performed by ·OH and O2·− during the degradation of MB. The presence of HCO3− and Cl− indicated moderate prohibitive effect on the degradation of MB, while NO3− and SO42− negatively affected the catalytic activity in a non-significant way. In brief, the results of this study show that boron doped perovskite-type semiconductor catalysts by combining with graphene has significant efficiency in the removal of MB from aqueous solution, which can be employed as effective photocatalyst materials for the treatment of other organic pollutants.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3