A Deep Learning Approach for Surface Crack Classification and Segmentation in Unmanned Aerial Vehicle Assisted Infrastructure Inspections

Author:

Egodawela Shamendra1,Khodadadian Gostar Amirali1ORCID,Buddika H. A. D. Samith2,Dammika A. J.2,Harischandra Nalin2ORCID,Navaratnam Satheeskumar1ORCID,Mahmoodian Mojtaba1

Affiliation:

1. School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC 3000, Australia

2. Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka

Abstract

Surface crack detection is an integral part of infrastructure health surveys. This work presents a transformative shift towards rapid and reliable data collection capabilities, dramatically reducing the time spent on inspecting infrastructures. Two unmanned aerial vehicles (UAVs) were deployed, enabling the capturing of images simultaneously for efficient coverage of the structure. The suggested drone hardware is especially suitable for the inspection of infrastructure with confined spaces that UAVs with a broader footprint are incapable of accessing due to a lack of safe access or positioning data. The collected image data were analyzed using a binary classification convolutional neural network (CNN), effectively filtering out images containing cracks. A comparison of state-of-the-art CNN architectures against a novel CNN layout “CrackClassCNN” was investigated to obtain the optimal layout for classification. A Segment Anything Model (SAM) was employed to segment defect areas, and its performance was benchmarked against manually annotated images. The suggested “CrackClassCNN” achieved an accuracy rate of 95.02%, and the SAM segmentation process yielded a mean Intersection over Union (IoU) score of 0.778 and an F1 score of 0.735. It was concluded that the selected UAV platform, the communication network, and the suggested processing techniques were highly effective in surface crack detection.

Funder

FE Steel Corporation

Japan Grant for spread of steel bridges in Sri Lanka

Australian Research Council

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3