Substation Placement for Electric Road Systems

Author:

Jakobsson Niklas1,Hartvigsson Elias1,Taljegard Maria1,Johnsson Filip1

Affiliation:

1. Department of Space, Earth and Environment, Energy Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden

Abstract

One option to avoid range issues for electrified heavy vehicles, and the large individual batteries for each such vehicle, is to construct electric road systems (ERS), where vehicles are supplied with electricity while driving. In this article, a model has been developed that calculates the cost for supplying an ERS with electricity from a regional grid to a road in the form of cables and substations, considering the power demand profile for heavy transport. The modeling accounts for electric losses and voltage drop in cables and transformers. We have used the model to exhaustively compute and compared the cost of different combinations of substation sizes and locations along the road, using a European highway in West Sweden as a case study. Our results show that the costs for building an electricity distribution system for an ERS vary only to a minor extent with the location of substations (10% difference between the cheapest cost and the average cost of all configurations). Furthermore, we have varied the peak and average power demand profile for the investigated highway to investigate the impact of a specific demand profile on the results. The results from this variation show that the sum of the peak power demand is the most important factor in system cost. Specifically, a 30% change in the peak power demand for the road has a significant impact on the electricity supply system cost. A reduction in the geographical variation of power demand along the road has no significant impact on the electricity distribution system cost as long as the aggregated peak power demand for all road segments is held constant. The results of the work are relevant as input to future work on comparing the cost–benefit of ERS with other alternatives when reducing CO2 from road traffic—in particular from heavy road traffic.

Funder

Swedish Governmental Agency for Innovation Systems

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. Shukla, P., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., and Fradera, R. (2022). Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. International Energy Agency (2022). Global EV Outlook 2022-Securing Supplies for an Electric Future.

3. Assessment of future EV charging infrastructure scenarios for long-distance transport in Sweden;Bischoff;IEEE Trans. Transp. Electrif.,2022

4. Large-scale implementation of electric road systems: Associated costs and the impact on CO2 emissions;Taljegard;Int. J. Sustain. Transp.,2020

5. Hjortsberg, O. (2020). Slide In-Teknik för Kontinuerlig Överföring av Energi till Elektriska Fordon, Fas2.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3