Eigen-Sensitivity-Based Sliding Mode Control for LFO Damping in DFIG-Integrated Power Systems

Author:

Zhang Rui1,Zhang Hao2,Ye Jianqiao3,Wang Jiaqing1,Liu Qing1,Li Shenghu3

Affiliation:

1. State Grid Anhui Electric Power Co., Ltd., Hefei 230009, China

2. State Grid Hefei Electric Power Supply Company, Hefei 230009, China

3. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

Abstract

Low-frequency oscillation (LFO) of the synchronous generators in power systems by wind power is boring. To improve the robustness of the damping control scheme, this paper applies the sliding mode control (SMC) at the doubly fed induction generator (DFIG), with the parameter of the SMC optimized by the eigen-sensitivity. The originalities lie in, (1) the states strongly associated with the critical modes are newly applied to design the sliding surface, (2) the closed-loop model of the power system with the improved equivalent control is derived to analyze the damping effect on the critical modes and the undesirable effect on the noncritical modes, (3) the gain in the improved equivalent control is optimized to damp the critical and noncritical modes, and (4) the eigenvector sensitivity is improved to derive the second-order eigen- sensitivity to solve the nonlinear optimization. Numerical results show that the proposed model damps the critical modes effectively for different wind speeds, while the undesirable effect on the noncritical modes is avoided.

Funder

State Grid Anhui Electric Power Co. Ltd. Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3