The Growth and Evolution of Biomass Soot in Partial Oxidation-Assisted Hot Gas Filtration

Author:

Tian Lin12ORCID,Jin Zixuan1,Gao Wenran1

Affiliation:

1. New Energy Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

Abstract

At present, partial oxidation is applied in the filtration processes of biomass hot gas to aid in solving the blockage problems caused by tar and dust condensates. However, in the resulting high-temperature and oxygen-limited environment, the risk of tar polymerization forming soot is created during the purification processes. Thus, this work established a hardware-in-the-loop simulation model using the Lagrangian method coupled with the chemical reactions on the particle surface. The model was then used to simulate the entire evolution process of soot, including its formation, growth, and interception. The simulation results confirmed that under partial oxidation conditions, the increase in tar’s conversion rate promotes the formation of soot. Further analysis indicated that the high-temperature field formed as a result of oxidation and the increase in the naphthalene/oxygen ratio are the main reasons for the soot formation. On the other hand, the growth process of soot was inhibited by partial oxidation, which is mainly reflected in the relatively smaller increasing magnitude of soot particle mass and the decrease in the soot formation rate. Although the formation and growth of biomass soot cannot be completely avoided, the growth process is beneficial to interception and the soot escape rate can be minimized by varying the premixed oxygen content. On this basis, the potential of the partial oxidation-assisted hot gas filtration method can be further investigated and analyzed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3