Optimization and Analysis of an Integrated Liquefaction Process for Hydrogen and Natural Gas Utilizing Mixed Refrigerant Pre-Cooling

Author:

Yan Fengyuan12,Geng Jinliang2ORCID,Rong Guangxin2,Sun Heng2,Zhang Lei1,Li Jinxu1

Affiliation:

1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

2. National Engineering Research Center for Oil and Gas Pipeline Transmission Safety/Key Laboratory of Ministry of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Transmission and Distribution Technology, China University of Petroleum (Beijing), Beijing 102249, China

Abstract

Liquefying hydrogen is an efficient way to store and transport hydrogen. However, the hydrogen liquefaction process is energy intensive. Therefore, an integrated liquefaction process of hydrogen and natural gas utilizing the mixed refrigerant cycle and the hydrogen Claude cycle is proposed. The process not only couples a steam methane reforming process to produce hydrogen and a carbon dioxide refrigeration cycle to assist in pre-cooling, but also employs a solar energy absorption refrigeration system to enhance energy efficiency. The proposed process is simulated and optimized using HYSYS and the particle swarm optimization algorithm, and energy, exergy, and economic analyses are performed. The energy analysis shows that the specific energy consumption of the proposed process is 5.2201 kWh/kg, a reduction of 10.67% compared to the base case. The exergy loss and exergy efficiency are 64,904 kW and 62.21%, which are 13.63% and 6.63% lower than the base case, respectively. The economic analysis shows that the total annualized cost of the process is USD 28.6 million per year. The proposed integrated liquefaction process not only realizes the high efficiency of energy utilization but also follows the development trend of integrated energy systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3